If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5.23x-4.9x^2=0
a = -4.9; b = 5.23; c = 0;
Δ = b2-4ac
Δ = 5.232-4·(-4.9)·0
Δ = 27.3529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5.23)-\sqrt{27.3529}}{2*-4.9}=\frac{-5.23-\sqrt{27.3529}}{-9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5.23)+\sqrt{27.3529}}{2*-4.9}=\frac{-5.23+\sqrt{27.3529}}{-9.8} $
| 10(s–2)=100 | | 16x-19+6x=113 | | 3x-17=2x+5 | | 5=p-69/4 | | 15-4x=39 | | 4(x-5)=(3+5) | | 16−w=−2(4w−1) | | 4(x-5)=3+5) | | 5=p−69/4 | | 5x-3=39-x | | 4=6−2w | | 8z+5=8z | | 4x+12x-6=4(4x+6) | | 264=130-x | | u/4+60=69 | | 15+x+95=180 | | 3w+8=68 | | x/7=-10/21 | | 27=-7w+2(w+6) | | -3(j-17)=-3 | | 10-x/2=17 | | 1÷4x−3=6x | | 18-(x+3)-2x=4+(x-5 | | 10x-20=5x+50 | | 4x+-1=2x+-25 | | 2(2x+4)=6x+3-2x+5 | | -13=r-2 | | s=π*6^2+π*6*15 | | (k/56)=(12/7) | | 7(3x+1)=112 | | 9x-7x+4x-5x=0 | | -16-5j=-4j |